viernes, 8 de mayo de 2009

Medidas de tendencia central

Media armónica

La media armónica, que representaremos por H, se define como sigue:

Obsérvese que la inversa de la media armónica es la media aritmética de los inversos de los valores de la variable. No es aconsejable en distribuciones de variables con valores pequeños. Se suele utilizar para promediar variables tales como productividades, velocidades, tiempos, rendimientos, cambios, etc.

Ventajas e inconvenientes:

En su cálculo intervienen todos los valores de la distribución.

Su cálculo no tiene sentido cuando algún valor de la variable toma valor cero.

Es única.

Media cuadrática
En matemáticas, la media cuadrática, valor cuadrático medio o RMS (del inglés root mean square) es una medida estadística de la magnitud de una cantidad variable. Puede calcularse para una serie de valores discretos o para una función de variable continua. El nombre deriva del hecho de que es la raíz cuadrada de la media aritmética de los cuadrados de los valores.

Esta media como medida de asociación tiene aplicaciones tanto en ciencias biológicas como en medicina.

A veces la variable toma valores positivos y negativos, como ocurre, por ejemplo, en los errores de medida. En tal caso se puede estar interesado en obtener un promedio que no recoja los efectos del signo. Este problema se resuelve, mediante la denominada media cuadrática. Consiste en elevar al cuadrado todas las observaciones (así los signos negativos desaparecen), en obtener después su media aritmética y en extraer, finalmente, la raíz cuadrada de dicha media para volver a la unidad de medida original.

Otras medias estadísticas son la media aritmética, la media ponderada, la media generalizada, media armónica.


Media geométrica

Sea una distribución de frecuencias (x, n). La media geométrica, que denotaremos por G. se define como la raíz N-ésima del producto de los N valores de la distribución.

G =

Si los datos están agrupados en intervalos, la expresión de la media geométrica, es la misma, pero utilizando la marca de clase (Xi).

El empleo más frecuente de la media geométrica es el de promediar variables tales como porcentajes, tasas, números índices. etc., es decir, en los casos en los que se supone que la variable presenta variaciones acumulativas.

Ventajas e inconvenientes:

En su cálculo intervienen todos los valores de la distribución.

Los valores extremos tienen menor influencia que en la media aritmética.

Es única.

Su cálculo es más complicado que el de la media aritmética.

Además, cuando la variable toma al menos un x = 0 entonces G se anula, y si la variable toma valores negativos se pueden presentar una gama de casos particulares en los que tampoco queda determinada debido al problema de las raíces de índice par de números negativos.

No hay comentarios:

Publicar un comentario